ASEAN Workshop on weather modification 2018 6th ~9th August 2018 Bangkok, Thailand

Mission and Current Status of Weather Modification Research in Korea

Joo Wan Cha, Ki-Ho Chang, Seong-Kyu Seo, Jeong Jin Yim, Ha-Young Yang, Sanghee Chae,, A-Reum Ko, Jeong Hwan Choi, Jung Ho Lee Dongoh Park, Kyung Eak Kim, Yonghun Ro and Jong-Chul Ha

> Applied Meteorology Research Division NIMS/KMA

National Institute of Meteorological Sciences

CONTENTS

Introduction

Method and Previous EXP.

Main results

 | Major Scientific Achievement and International Cooperation

1. Introduction

- History of Weather Modification
- Comparison of Technological Level among Nations
- Structure of Weather Modification Research
- Experimental Region

History of Weather Modification

- 1946: First airborne cloud seeding experiments (USA GE Co., Vincent Schaefer)
- 1950: Establishment of USA Weather Modification Association (WMA)
- 1958: CMA artificial rainfall enhancement(Jilin, China)
- 1961: Establishment of commercial company (United States WMI Co.)
- 1963: KMA Artificial airborne rainfall enhancement (KMA)
- 1995~98: KMA ground-based cloud seeding experiment (Inje, 10 times)
- 2001~02: KMA artificial airborne snowfall enhancement (Airforce plane, 3 times)
- 2006: Establishment of Cloud Physics Observation system (CPOS) in Daegwallyeong
- 2008: Verification of artificial snowfall enhancement effects by Airborne-Radar
- 2008~2016: Airborne cloud seeding experiments (Yongpyeong etc., 32 times)
- 2017: Introduction of first aircraft for atmospheric research and weather modification

The KMA first artificial rainfall enhancement exp.(1963)

Ground-based Agl seeding exp. (Inje, 1995)

Aircraft for Atmospheric Research and weather modification (2017. 11)

Comparison of Technological Level among Nations

section	Russia(CAO) (2015)	China(CAMS) (2013)	Japan(MRI) (2015)	Israel(NWC) (2016)	Korea(NIMS) (2017)
Operation	-	0	Х	0	Case study
Hail Suppression / Fog Dispersion	Practical use	Practical use	-	-	Basic Research
Budget/year	-	80 M USD	6 M USD	2 M USD	1 M USD
Human Resources	-	37,000	50	30	10
Research Period (years)	60	60	30	60	10
	Aircraft 13	Aircraft 46	Aircraft 1	Aircraft 3	Aircraft 1
Equipment	-	Rocket 5,223 Artillery 7,016	-	Ground-based generator 10	Ground-based generator 1
	Cloud chamber	Cloud chamber	Cloud chamber	-	-

* National Technology Level Evaluation: 73.4% compared to advanced country(KISTEP, 2016)

Structure of Weather Modification Research

Experiments

- Precipitation enhancement (annually Dec.~Jun.)
 - Airborne/Ground-based Exp.
 - Verification by obs. network

ent vertication >

< Airborne Exp. >

< Ground-based Exp.>

Observation

Cloud Physics Observatory

- Aerosol, Cloud, Precipitation
- Microphysical measurement

Modeling

Numerical Model for technology development - Numerical verification - Simulation before seeding

<WRF model simulation of

ground-based experiment>

<Cloud-Precipitation simulation by aerosol type>

Experimental Region

2. Method and Previous EXP.

- Improvement of Experimental Method
- Previous Exp. of Snow Enhancement
- Experimental Optimum Condition

Improvement of Experimental Wethod

Contents		Before (~2014)	After (2015~)
Airborne experiment	Decision of seeding path	Based on observation	Based on model prediction
	Airborne instrument	-	OPC (Optical Particle Counter)
Ground– based experiment	Seeding Amount / Time	Not fixed	Optimum (38 g h ⁻¹)
	Target area	Seeding place only	Diffusion places(2 points)
	Burning method	Manual	Automatic

Criteria	Airborne experiment	Ground-based exp.(snovvfall)	Ground-based exp. (rainfall)
Before	2002 Dry-ice	2006 Agl (manual)	2005 CaCl ₂ (manual)
After	2008 Agl/CaCl ₂	9 m	2015 CaCl ₂ (automatic)

Previous Exp. of Snow Enhancement

Airborne seeding

- Ave. snowfall enhancement: 0.7cm (250km²)
- -Validation rate: 43%
- Period/No.: 2008-2015/23 times

- Ground-based seeding
 - Ave. snowfall enhancement: 0.6cm
 - Validation rate: 30%
 - Period/Number: 2006~2015/126 times

 Validation method: When the precipitation enhancement appears in the target region during 15min. - 3 hrs after the seeding without incoming nature precipitation

Experimental Optimum Condition

Optimum seeding criteria

Criteria	Airborne experiment	Ground-based experiment		
Synoptic condition	Northern High, Southern Low			
Temperature	≤ - 5°C			
Wind speed	\leq 15 m s ⁻¹ (for safe)	$\leq 5 \text{ m s}^{-1}$		
Wind direction	Easterly wind(45~135°), maxin	Easterly wind (45~135°), maximum seeding height $:\ge$ 1400 m		
LWP in cloud	≥ 0.1 mm			
Cloud-type	Stratocumulus or Stratus	Winter orographic cloud		
Restrictions	Heavy-snowfall warr	ning for target region		
Seeding rate	~40 g min ⁻¹	~37 g hr ⁻¹		

11

3. Main results

- Validation of Cloud Seeding by Airborne Radar
- Airborne Cloud Seeding in 2016
- Validation using Numerical Model
- Microphysical Validation of Ground-based Seeding
 Exp. for 2018 Winter Olympics

Validation of Cloud Seeding by Airborne Radar

The enhanced radar reflectivity from seeding path is well appeared.

< Airborne reflectivity before and after seedign in 4 Mar. 2008 >

Airborne Cloud Seeding in 2016

Overview

No.	Date and time	Target	Seeding altitude/amounts	pictures
1	2016. 1. 29. 12:50~13:40	Gangneung	2.2km/AgI 1.35kg	
2	2016. 1. 29. 19:50~20:40	Pyeongchang (Not clear)	2.0km/Agl 1.5kg	
3	2016. 2. 6. 15:20 ~ 15:55	Mt. Odae (1.8 cm ↑) About 250km²	1.8~2.5km/Agl 1.2kg	
4	2016. 2. 20. 13:55~14:25	Mt. Odae	2.5~2.9km/Agl 1.2kg	
5	2016. 3. 9. 13:16~14:00	Mt. Odae (0.3~0.4 cm ↑) About 250km²	1.7~2.1km/Agl 1.5kg	
6	2016. 3. 9. 18:31~19:07	Yongpyong	1.7km/Agl 1.5kg	
7	2016. 6. 21 12:27~12:47	Yongpyong	1.8~1.9km/CaCl ₂ 4kg	11-contras
8	2016. 6. 21 13:41~14:03	Yongpyong	1.8~1.9km/CaCl ₂ 5kg	

Airborne Cloud Seeding in 2016 – Microphysical Validation–

- Snow particles increase in target region by seeding
- Airborne cloud seeding experiment at 6 Feb. 2016

← Seeding effect period: estimated by the diffusion model

Vertical reflectivity after seeding

Validation using Numerical Model

- MMS(Modified Morrison Scheme including Deposition, Contact and Condensation Freezing):
 - 1) A priori simulation 3 hrs before cloud seeding experiment
 - 2) Validation for snow enhancement experiments

Airborne cloud seeding- 2016.01.29 event

Microphysical Validation of Ground-based Seeding

The microphysical effects are well shown in seeding and target regions

Exp. for 2018 Winter Olympics

<Goal>

Development of cloud seeding technique using new atmospheric aircraft

Improvement of the verification of cloud seeding experiments

Semi-operational exps. for snow enhancement in the Pyeongchang region · Rental aircraft → Atmospheric research aircraft · Easterly ~ Northerly → Random direction

Alternative tool for supporting the water resources

Results of Aircraft Obs. In 2018

Drop size distribution of cloud and rain (Jan. 30 2018)

4. Major Scientific Achievement and International Cooperation

Major Scientific Achievement

KMA operation	Paper	Patent	Book	Technique transfer to industry
3	65	26	2	2
3	SCI: 29 Domestic: 35	Register: 18 Submit: 8	2	2

International Cooperation

International Workshop

2003, Seoul

2006, Beijing

2010, Daegu

2016, Daegu

Invited Seminar

Collaboration Research(Russia, 2013~2015)

NCAR, USA

CAMS, China

CAO, Russia

< NIMS-CAO Collaboration Research Agreement Conclusion('15)>

Hebrew Uni., Israel

Thank you for your attention!!!

E-mail: jwcha@korea.kr

Aircraft (2017. 11~)

< Atmospheric research aircraft >
• Model: King Air 350HW (Beechcraft, U. S. A)
• Capacity/instruments: 13 Persons / 26 kinds of 14 species
• Flight height/time: Max. 10km / 7 hr
• Application: 1) Monitoring of high impact weather
2) Monitoring of climate change and air quality
3) Study on cloud physics and weather modification

Equipment of Aircraft for Cloud and Rain

1	Instrument		Operating Principles	Primary Measurements	Range	
DMT, CCN-200 (Cloud Condensation Nuclei Counter)		Air Sampling	Condensation Nuclei	0.75~10 <i>µ</i> m		
DMT, CCP (Cloud Combination Probe)		CDP (Cloud Droplet Probe)	Forward Light Scattering	Cloud Droplet Concentration Spectrum	3∼50 µm (30 channels; Liquid Water Content Derived)	
	DMT, CCP (Cloud Combination Probe)	CIP (Cloud Imaging Probe)	Shadowing of Diodes	Cloud Droplet Concentration Spectrum	7.5~930 μm (resolution, 15 μm)	
		<i>LWC</i> (Liquid Water Content Sensor)	Hot Wire Sensor	Liquid Water Content	$0 \sim 5 \text{ g/m}^3$ (resolution, 0.01 g/m ³)	
	DMT, PIP (Precipitation Imaging Probe)		Shadowing of Diodes	Cloud Droplet Concentration Spectrum	100~6,200 μm (resolution, 10 μm)	
SEA, <i>WCM-2000</i> (Water Content Measurement)		Hot Wire Sensor	Liquid Water Content, Total Ice Water Content (Ice Water Content Derived)	0~6 g/m ³ (LWC) 0~10 g/m ³ (TWC)		