

WMO

Outlines

- 1. Numerical model seeding simulation
- 2. Field observation experiments

1. Bulk water cloud models

Model	year	variables
1-D mix-phased dual- parameterized convective cloud model	1987	qv,qc,qr,qi,qg,qh,ni,nr ,ng,nh,Fc
3-D nested convective cloud model	1993	qv,qc,qr,qi,qg,qh,ni,nr ,ng,nh,Fc
Convective cloud seeding model	2001	qv,qc,qr,qi,qg,qh,nr,ni ,ng,nh,Fc,Naer Naim
Convective cloud seeding model	2002	qv,qc,qr,qi,qs,qg,qh,nr ,ni,ns,ng,nh,Fc,Naer Naim
3-D cloud series model	2003	qv,qc,qr,qi,qs,qg,Nr,N i,Ns,Ng,Fc

Bin cloud models

- 1988 1-D, Qv ,101bin, 0.03μm-1μm, salt particle bins, 1μm-3250μm,cloud and rain particles
- 1998 1-D,Qv , Q c, Q r, Q i, Ni, N r(bin), 100 μm - 6 mm,37 bin
- 2001 3-D,Qv , Q c, Q i, N i , Qr , Qs, Qh(bin) , 100 μm-7 cm,21bin

Seeding models

- Hygroscopic seeding model: Aerosol and water drop bin model: 0.01um -1cm, 256 bins Nacl seeding model:Qn, Nn
- Agl seeding model:
 coupled to WRF, GRAPES, ARPS

stratiform model hail cloud model

WRF based AgI seeding model

 A WRF based AgI seeding model has been developed :Sbc + Sic + Sbr + Sir + Sdv

3-D Agl convective cloud model

• 4 nucleation modes: Fdep , Fcdf , Fctf , Fimf, function of T and S (Sw,Si) (DeMott, 1995)

ARPS and GRAPES based AgI seeding model

• Hail, frozen rain drop, Agl, qia, nia

WRF-based Agl seeding simulation

Seeding locations

Hygroscopic seeding with bin model (Rain enhancement)

Seeding spectra

Simulated rainfall of four seeding particle ranges

Hail suppression Agl seeding with 3-D convective model

Heavy rain reduction Agl seeding with 3-D convective model

120th-150th :Melting of graupel to rain 150th-180th :Evapration of raindrops

Operational runing

MM5, GRAPES model operational running since 2007

WRF model operational running since 2016

Explicit cloud schemes: CAMS

MM5(V3) (2002)

显式方案	预报量	
Warm rain	qv,qc,qr	
Simple ice	qv,qc (qi),qr(qs)	
Mix phase	qv,qc,qr,qi,qs,	
gsfc	qv,qc,qr,qi,qs,qg	
reisner2	qv,qc,qr,qi,qs,qg,ni	
schultz	qv,qc,qr,qi,qs,qg,	
CAMS	qv,qc,qr,qi,qs,qg; nr,ni,ns,ng,fc	

GRAPES (2007)

显式方案	预报量
kessler	qv,qc,qr
ncepcloud3	qv,qc (qi),qr(qs)
lin	qv,qc,qr,qi,qs,qg
ncepcloud5	qv,qc,qr,qi,qs
etamp	qv,qc,qr (qi,qs)
etampnew	qv,qc (qr, qi,qs)
simice	qv,qc,qr (qi)
wsm3	qv,qc,qr (qi,qs)
wsm5	qv,qc,qr,qi,qs
wsm6	qv,qc,qr,qi,qs,qg
thompson	qv,qc,qr,qi,qs,qg,ni
CAMS	qv,qc,qr,qi,qs,qg; nr,ni,ns,ng,fc

WRF(V3.2)

显式方案	预报量
kessler	qv,qc,qr
Sbu_ylin	qv,qc,qr,qi,qs
lin	qv,qc,qr,qi,qs,qg
gsfcgce	qv,qc,qr,qi,qs,qg
etampold	qv,qc,qr,qs
Etamp_hwrf	qv,qc,qr,qi,qs
etampnew	qv,qc ,qr, qi,qs
wsm3	qv,qc,qr (qi,qs)
wsm5	qv,qc,qr,qi,qs
wsm6	qv,qc,qr ,qi,qs ,qg
thompson	qv,qc,qr,qi,qs,qg,ni,nr
wdm5	qv,qc,qr,qi,qs;nn,nc,nr
wdm6	qv,qc,qr,qi,qs,qg;nn,nc,nr
Morr_two_moment	qv,qc,qr,qi,qs,qg;nr,ni,ns,ng
milbrandt2mom	qv,qc,qr,qi,qs,qg,qh;nc,nr,ni,ns,ng,nh
CAMS	qv,qc,qr,qi,qs,qg; nr,ni,ns,ng,fc
CAMS_seed	qv,qc,qr,qi,qs,qg; nr,ni,ns,ng,fc,Naer,Naim

Lou Xiaofeng, et al. Cloud-resolving model for weather modification in China. Chin Sci Bull, 2012. (SCI)

	MM5_CAMS,15 levels	WRF_CAMS, 35 levels
Precipitation	Rain/h (cm)	
	Rain/3h(cm)	Rain/3h(cm)
	Rain/6h (cm)	Rain/6h (cm)
	Rain/day (cm)	Rain/day (cm)
Macro and micro physical fields	Lwc (mm)	Lwc (g/m ²)
	Super cooled lwc (mm)	Supercooled lwc (g/m ²)
		CTT (K)
		CTH (m)
	500,700,850hPa , Q+w+T	500,700,850hPa ,Q +w+T
	Qc (g/kg)	Qc (kg/kg)
	Qr (g/kg)	Qr (kg/kg)
	Qi (g/kg)	Qi (kg/kg)
	Qs (g/kg)	Qs (kg/kg)
	Qg (g/kg)	Qg (kg/kg)
	Ni (#/ m ³)	Ni (#/ m ³)
	Nr (#/ m ³)	Nr (#/ m ³)
	Ns (#/ m ³)	Ns (#/ m ³)
	Ng $(\#/m^3)$	Ng $(\#/m^3)$

Three explicit schemes: CAMS, Morrison, WSM6 Precipitation forecast comparison(2015,6-11)

>10, moderate rain, heavy rain ,CAMS good.</

2. Field observation experiments

Field observation of Clouds and precipitation in Tibet Plateau

- Vertical structures of clouds and precipitation : radar (Ka, Ku, C), Microwave radiometer, disdrometer;
- Three-dimensional structure observation of plateau convective system: precipitation strength, phase, rain drop, dual-doppler to 3-d wind.
- Microphysical Characteristics of clouds and precipitation:
 King Air and airborne equipments, 200km×200k

King Air 350ER and probes

飞机搭载设备

particles,150µm-Nevzorov LWC/TWC Sens¹⁹200µm

HVPS : precipitation

AIMMS-20 : T, RH, P, W

3V-CPI:25-1550µm

FCDP: 2µm-50µm

Tibet plateau: less small particles, wide spectra distribution Beijing: more small particles.

Taihang ShandongLu cloud and Precipitation Aircraft Observation experiment)

(2017-2019,10million (Yuan), more than 75 expert: Hebei Province, WMC, University, CAS

Target area: 01.02,03,04

图 12 四架飞机联合探测飞行,三架国王在上面,运 12 飞机在最底层

图 10 单机雨核连续探测飞行方案,地面雷达做雨核追踪

Three or four King Air

Radar coverage for hail suppression

地形云增雨作业试验(5.22) 2017-05-22, Weather system: western wind trough

内丘

南和

Aircraft observing and radar

ecko

Altitude/km

平乡

魏县

邱县

控制面板(北京时)

地面雨里 (nh) 2017.05.22-

长治雷达(组合反射率)2(

太原雷达(組合反射率)2

邯郸雷达(0.5°仰角 回波强

石家庄雷达(0.5°仰角 回波

King Air First flight: observing cloud microphysical features, 6:07-08:41

King Air Second flight: comparison obs before and after ground seeding(03,04)15:02-18:00

ground seeding :antigun shells 82, rocket shell 167, 17:00, >30dbz,0°Clevel at 4000m, cloud top 8Km

-• 太原 (C2) -• 长治 (CC)

组合反射率▼

🖸 🚺 🚺 🗖 截图 🚱

2017.05.22 - 16.26.0 2017.05.22 - 16.21:0

2017.05.22-16:15:00

2017 05 22- 16:10:00

2017 05 22- 16:05:0

2017.05.22 - 16:00:00 2017.05.22 - 15:55:00

2017.05.22- 15:49:00 2017.05.22- 15:44:00

2017.05.22-15.39.00

2017.05.22-15.34:00

2017.05.22- 15:28:00 2017.05.22- 15:23:00

2017.05.22 - 15.18.00 2017.05.22 - 15.13.00

2017.05.22 - 15.08.00 2017.05.22 - 15.02.00

2017.05.22 - 14:57:00 2017.05.22 - 14:52:00

2017.05.22-14:47:00

2017.05.22-14:41:00 2017.05.22-14:36:00

2017 05 22 - 14:31:0

