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Thin cirrus
Deep convective clouds with anvil

Convective cluster

Cumulus



There are different cloud types in the atmosphere
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Clouds are important component of water cycle

The Water Cycle
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https://pmm.nasa.gov/resources/acronyms#NOAA
http://www.srh.noaa.gov/jetstream/index.htm

Why Clouds are important

v Generate precipitation (liquid/ice)

v Impact radiation and energy and water balance
v’ Cool the earth surface

v’ Reflect radiation back to space

v' Warm the atmosphere

v' Moisten the atmosphere

v’ Process aerosol particles

v’ Cleanse atmosphere ....

v Prime importance for Water resources



How do clouds form ?

Convection Convergence Forced uplift Frontal uplift

- / . Way _
Heated surface Low presﬁ

S

7/22/2019 Cloud Physics/Thara Prabhakaran 6



ISCCP-DZ 19830 7-200912 Mean JJH

=4
150 120 -0 i) i) 120 150
Daytime Deep Convectiwve Cloud Amount )

[T T

Mo data Q d ] 11 15

7/22/2019 Cloud Physics/Thara Prabhakaran 7

n://1sccp.giss.nasa.gov/products/browsed2.html




&

”~ Fair weather cumulus and congestus
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above condensation level Surface
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Problem: Everybody drives everybody

Aerosol

Cloud
processes

Thermody
namics
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Clouds are three
phase systems

Freezing
80 calfgm

g —)
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Rain drop formation

Growth of droplets Collision coalescence Growth of ice and Melting of ice

- « Raindrop

., forms O

Falling
large cloud

drop
* collide and
coalesce

Cloud grows above freezing level, mixed phase (water + ice)
process become important in contributing to precipitation.



Cloud droplet
0.02 mm

Cloud condensation nuclei
0.0002 mm
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What happens when water vapour condenses ?
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Facts on CCN

-Land is a source for CCN (high over land and low over ocean)
-Dust is not a dominant CCN (however the adsorption
properties can make it a CCN- can swell)

-Clay is CCN active

-forest fires are source of CCN

-fossil fuel emissions (CCN at 1 % SS)

Arctic clean air CCN concentration is = 30 cc while in
continental air it could be 3000 cc

CCN/CN=0.2-0.6 in marine air
CCN/CN =<0.01 to 0.1 continental air — due to nonactivated
small particles at low SSin large number



Saturation ratio

CCN activation
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Consider a air parcel

CCN are chemically same and have same dry
mass, they have same Kohler curve

The Scr is approx. 0.001 to 0.1 and the
Accuracy needed for this observation are very
high and is not observable
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CCN spectra
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We consider cloud droplets or ice particles in a cubic cm
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Collisions 7ty2 — effective collision cross-section

Collector drop n(r1+|’2)2 -geometrical collision cross-section
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Follows Streamlines

Collision efficiencies
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Fall velocities

- dM
Collection = = w1 — Wi,
LWC
Collector drop of  oreney

radius rq

Cloud droplets of
radius r» uniformly
distributed in space
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Breakup of raindrops

0 5cm
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Rain drop formation

Growth of droplets Collision coalescence Growth of ice and Melting of ice
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Cloud grows above freezing level, mixed phase (water + ice)
process become important in contributing to precipitation.



PRECIPITATION MECHANISMS
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Cold cloud

Heterogeneous freezing
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Percentage of clouds containing ice >1L-1 with Cloud Top Temperature
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Supercooled liquid

Cloud droplets or frozen rain/drizzle drops

 Hazardous for the aircraft flying in the mixed phase
region

* Sometimes seen at higher altitudes under strong
updrafts

* Contributes to riming: Deposition of super-cooled
liquid droplets on frozen drops or ice crystals



Ice crystals: Habit Diagram
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Definition of ice nucleating particles

* Anice nucleus is an aerosol particle which acts as the nucleus for
the formation of an ice crystal in the atmosphere.

requirements:

* Insoluble in water

* size>0.1um

* ice active sites on the surface

* crystallographic shape similar to ice (hexagonal)
atmospheric concentrations of ice nuclei: < 10 per liter

well-known types of atmospheric ice nuclei: mineral dust, soot
particles, biological particles (bacteria), Clay (also found), organic
material —effective IN
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INP concentrations (Kanji et al. 2017)
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Condensation freezing ICE nucleation modes

Water molecules Contact freezing
' collect on to the

surface

Cloud droplet

Particle
(contact nucleus)

Freezing nucleus

(within the droplet) Note: Temperature at which a particle can
(requires air supersaturated with act as ice nuclei depends on the mechanism
respect to water) of ice nucleation and the history of the
Liquid water forms and then particle (basic difference is whether
freezes nucleation is from the vapor/liquid phase)
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ICE nucleation modes
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Ice nucleation and growth (-280C)




Ice Multiplication Process
N\

» Fracture of Ice Crystals
L N/ /\
L
AN\

=

« Splintering of Freezing Drops K*
conditions:
Temperature in the range of -3 ° to —8 °C. ( \)
droplets (D >25 um). ‘ ‘ ‘
3. Large droplets coexisting with small cloud ‘

During ice particle riming under very selective ‘
L =~
2. A substantial concentration of large cloud
droplets.
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Sequence of events in the ice multiplication process

1. Freezing of Water drops

2. Supercooled droplet freezes (in isolation or after colliding with an
ice particle)

3. Freezing of water drops on to ice particle lead to Riming

4. Mesh of ice shoots through the droplet and freezes enough water
to raise temperature to zero degree C

5. Transfer of heat from partially frozen droplet to cold ambient air —
ice shell forms over droplets and thicken inward

6. Water is trapped inside — as it freezes, expands, increase stress on
ice shell —which explodes

N
) L2
7. Results in numerous small ice splinters ?)/\;/

=25 um, temperatures are. between., —2.5 and —8.5 °C



Clear evidence of snow leading to precipitation formation
Width of strip=1600 um
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The equilibrium vapor
pressure of water vapor
with respect to ice is
less than that with
respect to liquid water
at the same subfreezing
temperature

’
W@é:;saturated cloud will be
,supersaturated with respect
to ice at a rate of about 1%
per degree of supercooling

2 i 2 oot B or

Bergeron Findeisen process

» Ice particles in clouds with supercooled water grow rapidly to precipitation-sized particles.

» Supercooled droplets evaporate and ice particles grow at the expense of vapour through
depositional growth

- - . "" - pr - ) S ;"-".' y L
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Growth of ice particles accretion

2. Riming
Riming is a mode of accretion growth of ice particles.
*Super-cooled liquid stick to and freeze on the surface of
the ice particles to become rime - a rimed crystal
*Original Ice particle is completely masked by the rimes,

it becomes a graupel.
*When a graupel grows larger than 5mm in size, it is

called hail.

Deposition of super-cooled liquid droplets on frozen
drops or ice crystals

-=> collision process

- dependant on collision partners



Rimed planar ice crystals of 2 to 3 mm diameter, rimed column ice crystal of 1.5 mm
length

from: Pruppacher and Klett, 1997




Riming starts at the lower ;r

face of the plate (lab finding) >
Mass 0.1 to 0.3 gcm-3

10.9 A rimed sector plate. The rime grows just on one side, presumably the
rside durine the fall of the plate. Photo courtesy of Dr Charles A. Knight.



Rimed Dendrite with a central hexagonal plate

More riming

Face view

~Less riming

Iwai (1983)

(b)



Growth of ice particles

2. Riming
growth of graupel

1. deposition of super-cooled
droplets mainly at the lower side
-» conical graupel

2. balance point changing >
tumbling

-> lump graupel

laboratory experimental studies

conical and lump graupel : i : .
graupel density, from 0.05t0 0.9 gcm -

—,
[ -

from: Pruppacher and Klett, 1997

Continued riming of ice crystals would eventually lead to the formation of graupel.



Growth of drop into a conical shaped graupel

Fig. 10.10 The growth evolution from a drop into a conical graupel. The diameter
of the frozen drop is about 450 um; the diameter of the graupel at the last stage of
development is about 2 mm. From Pflaum ez al. (1978). Reproduced by permission
of the Royal Meteorological Society (UK).




Collection kernels of graupel (6, 10 and 15 microns)

Kices = 10.06(mv)"**".

Kiceto = 10.22(mv)"",

Kicers = 10.72(mv)""*°.

Blohn et al. (2009)

M v is momentum of graupel of mass m and fall velocity v



Ice —ice collisions

Graupel collecting ice crystals

*-|ce particle collide — they can stick together
(sintering- fusing the surfaces),

*-interlock due to the branches of ice crystals
such as dendrites

*-bounce apart

*|ce particle can collide to form large ice
particles, such as snow flakes



Ice accretion growth
Occur in the dry growth or wet growth regime.

Dry growth : supercooled drops collide with an ice particle and
freeze on it. (freezing of water also releases latent heat, which will
warm the ice particle surface to a temperature above the
environmental air. heat can be dissipated efficiently so that the
crystal surface temperature remains colder than 0°C.)

Wet growth regime : if the collection of supercooled water
droplets is going on rapidly enough such that the accumulated heat
cannot be dissipated quickly, the ice surface may approach 0°C and
the above spontaneous freezing may or may not occur. This occurs
where the liquid water content of the supercooled droplets is
high. The amount of ice formed depends on how fast the heat is
dissipated, and not all the water droplets accreted turn into ice.



Hailstones

Hailstones represent an extreme case of the growth of ice
particles by riming. They form in vigorous convective clouds
that have high liquid water contents.

The largest hailstone reported in the USA (Nebraska) was
13.8 cm in diameter and weighed about 0.7 kg. However,
hailstones about 1 ¢cm in diameter are much more common.

If a thin section is cut from a hailstone and viewed in trans-
mitted light, it is often seen to consist of alternate dark and
light layers (Figure follows).

The dark layers are opaque ice containing numerous small
air bubbles, and the light layers are clear ice. Clear ice is
more likely to form when the hailstone is growing wet.



*Ice particles grow by colliding and
aggregating

*Collision depends on their terminal fall
speeds

*Frequency of collisions are also
enhanced if riming has taken place

Aggregates of dendrites
observed during
CAIPEEX




How can we look at pro
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t(r)

Cloud particle size distribution

o Q } I
A 29 Qe
N :I f (r)dr number concentration (0 moment)

NT :j f (r)rdr Integral radius of drops (1t moment )

B~N 2 :I f (r)rzdr extinction coefficient (2" moment)

W-~NTF :I f (r)rsdr water content (3" moment)
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Rates of microphysical processes are
determined by “local” DSDs, that
display a significant variation
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Air mass continues to ascend and cool, SS decreases as water vapor is depleted by
condensational growth, no more new particles activated.

Altitude
Altitude

Droplet Concentration

Supersaturation

Altitude
Altitude

Droplet Concentration

Supersaturation

Altitude
Altitude

Droplet Concentration

Supersaturation

Altitude

=

Altitude

Droplet Concentration

Supersaturation
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Total Mass (Liquid Water) Concentration (LWC)

In warm clouds, at any level above cloud base, a measurement
of LWC tells us how much liquid water has condensed as the air

mass rises
This can be compared with the calculated adiabatic liquid water

content that predicts the maximum possible liquid water that
can be removed from an ascending cloud mass.

Maximum Supersaturation

Altitude
Altitude

Cloud base
Supersaturation Liquid Water Content



Droplet Concentration (cm'3)

Simple Condensational Growth Model
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25

Condensational Growth rate ~ 1/D?

m— =1 min.
m— T=5 min.

= T=10 min.
m— T=20 min.
m—= T=30 min.
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Observations
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m— T= 1 min.
m— T=5 min.
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s = . Rain drop size distribution
.‘/%. Raindrop 0 v

x* , forms
s b 0%\

Falling VAN
° \ -
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where N(D)dD i1s the number of drops per unit
volume with diameters between D and D + dD

o o Not true
and N, and A are empirical fltth

value of N, tends to be|constant| but A varies with

the rainfall rate.
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Bulk microphysical model uses ‘N and ‘Lamda’
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Rain rate

Fall velocity of hydrometeors

R= % / " N(Dw)D3vn(Dp)dD;

Number size distribution of hydrometeors

Volume flux of precipitation through a
horizontal surface (m3 m-2 s-1)
mm hr-1
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Reflectivity

Measured backscattered intensity from the radar signal

o0
Z =Y D= [ N(Dy\DyuD;
v 0
mm® m~—?
dBZ = Z [dB] = 10 log (7=
_ R(mmh=t) 0.1 l 10 100
7 — 300RY® zZmmfwm® 95 300 9500 300000
dBZ 10 25 40 35
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Terminal velocities of hydrometeors

hydrometeors size terminal

velocity

cloud droplets < 100 pm <0.25 m/s
rain drops 100 pm -8 mm 0.25 m/s —4 m/s

Ice crystals <1.5mm < 0.6 m/s
snow flakes 1 mm-12 mm 0.5m/s—1.5m/s
graupel 0.5 mm-4mm 0.75m/s —3 m/s

hailstones

5mm-8cm

5m/s—-50 m/s




Houze [1993]

mixed-phase clouds

ice clouds

melting layer

marginally detectable precipitation
drizzle, very light rain or light snow
moderate rain and heavier snow
melting snow

moderate to heavy rain

hail

-30to -10 dBZ
-25to-10dBZ
-20t0o 0 dBZ
-20t0o 0 dBZ
0-10 dBZ
10-30 dBZ
30-45 dBZ
30-60 dBZ

> 60 dBZ
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RHI images of Reerctnvnty and Doppler products across the system 0 degree
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Hygroscopic seeding

* Applicable in clouds with tops below freezing level; warm clouds
containing water droplets

* Hygroscopic material is dispersed into the updraft region at cloud
base

 Particles are larger and more hygroscopic than the natural particles
* The cloud droplets nucleate preferentially on the seeding particles

e This inhibits smaller natural cloud condensation nuclei from
becoming activated

* The result is a broader-than-natural droplet spectrum near cloud
base

* Increases potential for precipitation to develop earlier and more
efficiently in the lifetime of the cloud.
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Glaciogenic seeding

e Agl is spread in the supercooled water region (deep cumulus,
congestus).

* The ice crystals grow to the larger sizes and ultimately fall under
gravity. While coming to earth they melt and produce the rainfall.

* Hypothesis is that a deficiency of natural ice nuclei and therefore
insufficient ice particles (~1/liter at —202C) for the cloud to produce
precipitation

* The natural clouds in their developing stages have ice
concentrations <1 L within their updrafts at the —5°C to -10°C level.

* Agl seeding initiates the ice process earlier in a cloud’s lifetime.

* Agl seeding enhances the production of graupel earlier in a cloud’s
lifetime

* Graupel produced by Agl seeding provides more raindrop embryos

* Additional loading of precipitation at lower levels in seeded clouds
results in changes in updraft/downdraft structures and modify
dynamic aspects of the storm.



Cloud processing of aerosol

Clouds exert significant effects on aerosol

»Removal of aerosol by rain falling to the surface
» Convective redistribution

»Vertical transport of aerosol by clouds

» Coalescence processing (modification in the
number and size of aerosol particles resulting
from repeated drop coalescence events)
»Chemical processing (the formation of
nonvolatile mass attributable to aqueous
chemical reactions)

»New particle formation around clouds
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F1G. 1-9. Possible pathways of atmospheric processing and aging of aerosol discussed in this chapter (see section
4). The gray dotted box shows cloud droplets that could form via different aging pathways that can lead to mod-
ification of the aerosol. Different aerosol particle colors are to indicate that they have been modified compared to
their emitted state. Bold lettering indicates processes and normal lettering, the presumed state of the aerosol
resulting from indicated processes.



