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Aerosol effects

Direct Effects Indirect effects

Direct Forcing

 Direct refers to the interaction between solar and terrestrial
Infrared radiation with aerosol particles before they become cloud

particles.

* This magnitude of the interaction depends on the particle
concentration, size, shape, and composition of the particles.

« This produces a net cooling effect due to the solar radiation that is
scattered back to space. However, aerosol particles like black
carbon can produce net warming






Evidence for the
indirect “Twomey”
effect in this satellite
Image of clouds off
the coast of
California.

The ship tracks are a
result of high
reflectivity regions in
the marine stratus
clouds formed by
Increased
concentrations of small
droplets formed on the
sulfate particles from
emissions by ships.  CloudPhysics/ Thara Prabhakaran .




Cloud Condensation Nuclei (CCN)

The “seeds” upon which cloud droplets form
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Cloud Condensation Nuclei (CCN)

The “seeds” upon which cloud droplets form

Measurements of CCN provide a direct link between aerosol an
cloud microphysics.

More CCN

More Cloud Droplets
Smaller Droplets




Aerosol Cloud Interaction
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I More pollution aerosols I

L

More and smaller cloud
droplets

!

[ Less rain production ]

!

[ Clouds last longer

\

Microphysical effects: | Climatic impacts: I
Less efficient collection l Sunlight + ]
of cloud droplets by l
snowflakes entering the
cloud from above I Temperature ¥ I

l Snowfall rate 4 l | Snowfall rate T I

Fig. 5. Schematic diagram of the effect of pollution on snow
showing the microphysical and climatic implications (adapted from
Lohmann. 2004).



Why adding more CCN decreases average droplet size and
Increases cloud lifetime

Low
concentration
of CCN

Form cloud
droplets in
supersaturated
environment

That grow until
environment is
no longer
supersaturated

Some grow to
raindrops that fall
out and cloud
dissipates




Why adding more CCN decreases average droplet size and
Increases cloud lifetime

Form cloud That grow much NG rain forms
High droplets in slower as they cloud lasts lon ’er
concentration of supersaturated compete for 9
CCN environment available vapor




REVIEW: ATMOSPHERE

Aerosols, Climate, and the ydrological Cycle

V. Ramanathan,’™ P. ]. Crutzen,’? ]. T. Kiehl,? D. Rosenfeld*
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Fig. 5. Aircraft data illustrating the increase in cloud drops with aerosol number concentration.
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(30), Astex (37), the thick red line is obtained from a composite theoretical parameterization that
fits the INDOEX aircraft data for the Arabian Sea (23). The gray-shaded region is the INDOEX
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Aerosol cloud interaction in liquid clouds
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Why do we care about aerosol-cloud
interactions?

* Planetary albedo is strongly affected by clouds

e Large uncertainty in aerosol effects on albedo and radiative
forcing

e Larger uncertainty in aerosol effects on cloud albedo and radiative
forcing
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Radiative forcing of climate between 1750 and 2011
Forcing agent
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Do aerosols
invigorate deep
convective

storms ?
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Conceptual model: . -
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Increase in CCN Pollution invigorate clouds ?

Small and numerous cloud droplets, suppress collision
coalescence, delays raindrops and the ice formation (
Khain et al., 2005).

Pristine

Review on Invigoration (Altaratz et al, 2014) B
gy
. . . L Raindrop
Invigoration of convective storms S

a) Thermodynamic invigoration: latent heating and
convective updrafts (Andreae et al., 2004; Tao et
al., 2012)

e

Dissipating

Growing

b) Greater lightning activity, but with a large
sensitivity to ice multiplication (Mansell and Ultrafine particles make stronger storms ?
Ziegler 2013)

c) Weak winds (Koren et al., 2005; Khain et al., 2005; |
Tao et al., 2007; Storer and van den Heever, 2013)

u Water supersaturation

d) Microphysical invigoration Fan et al., (2013, 2016).

e) Increased cloud fraction and cloud top height
(Grabowski and Morrison 2016)

f) Anthropogenic aerosol may invigorate storms (Fan
et al., 2018)

CCN_, + UAP_
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Fig. 9. Schematic illustration of the differences in CTH, doud fractions, and
cloud thickness for the storms in clean and polluted environments. Red dots
denote cloud droplets, light blue dots represent raindrops, and blue shapes
are ice particles. In the polluted environment, convective cores detrain larger
amounts of cloud hydrometeors of much smaller size, leading to larger ex-
pansion and much slower dissipation of stratiform/anvil clouds resulting
from smaller fall velocities of ice particles because of much reduced sizes.
Therefore, the larger cloud cover, higher CTHs, and thicker clouds are seen in
the polluted storm after the mature stage.

The microphysical
effects induced by
aerosols are

a fundamental
reason for the
observed increases
in cloud

fraction, cloud top
height, and cloud
thickness in the
polluted
environment, even
when invigoration
is absent.
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Liquid phase
influences the
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Pollution elevates the level of rain drop formation
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Konwar et al., Aerosol control on depth of warm rain in convective clouds,
Journal of Geophysical Research, 117, 2012, D13204



Aerosol impact on congestus/ deep cumulus clouds:

Invigoration of warm phase : More warm clouds will cross the freezing level to
regions where mixed phase processes become important
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Decrease<Precipitation = Increase

AG <AL,
decrease in precipitation

AG> AL,
increase in precipitation

Tao et al, 2007

|

Continental squall lines

Tropical squall lines,
tropical storms

Khain and Pokrovsky, 2004,
Khain et al. 2005, 2008b

Continental deep convective
clouds like in Texas

Takahashi et al. 2008

4—4 Frontal systems h@ alD

Deep tropical convective
clouds

Khain et al. 2008¢

-

Breezes l@

Seiferand Beheng, 2006,

Breezes i

Khain et al. 2005; Lynn et

al. 2005b; Lynnand
Khain, 2007; Tao et al.
2007; Van den Heever et

al. 2006

Khain et al., 2005;
2008a,b, 2010; Wang et al.
2005; Benmoshe et al.,
2012; Gayatriet al., 2018

Lynn et al. 20053,b; Lynn

ist air) squall and Khain 2007; Tao et
lines (Florida) al. 2007.

Khain and Lynn 2008

Supercell storms Ir@y a@

Givati and Rosenfeld, 2004;

Jirak and Cotton 2006; Lynn et

Cloud ensembles, multicell
storms, hail storms

al. 2007; Boryset al. 2000

Orographic clouds ir@y aQ

Lee et al., 2005, 2008;
Seifert and Beheng, 2006;
Martinsetal. 2008;
Khain and Lynn, 2009;
llotoviz et al, 2014; Loftus
etal, 2014

Rosenfeld, 1999; 2000;
Chenget al. 2006; Levin and

Orographic clouds in@st air

Cotton 2007; Altaratz et al. wetested
2008; Xue et al. 2008.

Warm rain cumulus

Albrecht,1989; Feingold et
al. 2005; Magaritz et al.2007;
McFarquhar and Heymsfield,

Deep convective clouds in Fan et al. 2007a,b; Li
moist Yyrban areas etal. 2008

| Lynn et al. 2007 |

2001; HudsonandYum,

Stratocumulus

2001; Yum and Hudson 2002;
Hundon and Mishra, 2007;

Goke et al, 2007

Precipitation from deep convective clouds
developing in low RH / high RH may decrease /
increase with increasing CCN concentration.




Cloud liquid water (CWC) profile from in situ measurements
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CWCiom™  Prabhaetal., 2011

Rime splinters form when
supercooled drops come in
contact with solid surface




Altitude (km)

Vertical variation of cloud effective radius
from CAIPEEX observations and bin simulations
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Vertical structure of microphysics of monsoon clouds: mixed phase

DSDs
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Effective radius at freezing level increases with subcloud moisture
content and aerosol number concentration
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Effect moisture on ice microphysics is complex from observations alone
Especially in understanding the processes

Ice water content and rimed ice particle number concentration
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*Higher ice mass in clouds growing over moist boundary layer
*|ce particle growth by riming increases with increase in
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Liquid and ice processes in a mixed phase cloud

10-3 T I T I T I T I T I T I T
2 4 6 8 10 12 14 16
ref (I—lm)

Each point correspond to a Deep convective cloud observation from CAIPEEX flight

7 Monsoon and 5 pre-monsoon

Patade et al., 2019)



Altitude (km) (above MSL)
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Cloud albedo effect

* More aerosols compete for uptake of water vapor,
cloud droplet does not grow

* As a result more numerous, smaller cloud droplets
— have larger surface area than few large cloud

droplets

* The polluted cloud reflect more solar radiation back
to space- negative radiative forcing (cloud albedo
effect)

* - does not cause a change in precipitation



Cloud albede and lifetime effect (negative radiative effect for warm clouds at
TOA; less precipitation and less solar radiation at the surface)

more reflection .« higher albedo

,* . O\ smaller cloud particles
9 /’ i+ less precipilation

. .
b . . .\

Yo . .
polluted™ 2 >« ™. % v
1, higher aptical depth
— less radiation at surface




Table 1 Overview of the different aerosol indirect effects and their sign of the change in surf:

precipitation
Sign of change
Cloud types in surface Potentiz
Effect affected Process precipitation magnitu
Cloud albedo All clouds For the same cloud water n/a n/a
effect or ice content more but
smaller cloud particles
reflect more solar
radiation
Cloud lifetime All clouds Smaller cloud particles Negative Small
effect decrease the precipitation
efficiency thereby
presumably prolonging
cloud lifetime
Glaciation Mixed-phase  An increase in ice nuclei Positive Mediun
indirect effect clouds increases the precipitation
efficiency
Thermodynamic  Mixed-phase  Smaller cloud droplets delay  Positive or Mediun
effect clouds freezing causing super- negative
cooled clouds to extend to
colder temperatures
Semidirect effect  All clouds Absorption of solar radiation  Negative Large



Table 1. Overview of the different aerosol indirect effects and range of the radiative budget perturbation at the top-of-the atmosphere ( Fyr o 4)
[Wm2]. at the surface (Fgp¢ ) and the likely sign of the change in global mean surface precipitation (P) as estimated from Fig. 2 and from
the literature cited in the text.

Effect Cloud type Description Froa Fspc P
Indirect aerosol effect for All clouds The more numerous smaller —0.5 similar n/a
clouds with fixed water amounts cloud particles reflect to to
(cloud albedo or Twomey effect) more solar radiation —1.9  Froa
Indirect aerosol effect with All clouds Smaller cloud particles —0.3  similar decrease
varying water amounts decrease the precipitation to to
(cloud lifetime effect) efficiency thereby prolonging —1.4  Froa
cloud lifetime
Semi-direct effect All clouds Absorption of solar radiation +0.1 larger decrease
by soot may cause evaporation to than
of cloud particles —0.5 Froa
Thermodynamic effect Mixed-phase  Smaller cloud droplets delay ? ? increase or
clouds the onset of freezing decrease
Glaciation indirect effect Mixed-phase  More ice nuclei increase the ? ? ncrease
clouds precipitation efficiency
Riming mdirect effect Mixed-phase  Smaller cloud droplets decrease ? ? decrease
clouds the riming efficiency
Surface energy All clouds Increased aerosol and cloud n/a —1.8 decrease
budget effect optical thickness decrease the to

net surface solar radiation




Semi-direct effect (positive radiative effect at TOA for scot inside clouds,
negative for soot above clouds)
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Semi direct effect

* Light-absorbing aerosol generate local heating and
they can modify the atmospheric stability and
suppress vertical motion and cloud formation
(Hansen et al. 1997)

* Reduced downwelling solar radiation at the surface.

* net surface radiation, surface sensible and latent heat
fluxes are reduced.

* Over land, where surface heating is a primary driver

* for convective clouds, this can have a significant
impact on cloud fraction and cloud depth.

* This process links aerosol—cloud interactions to land
surface type



What about deep clouds 7

* Elevated levels of aerosols - suppress precipitation
formation in the warm region — elevates the level of
rain formation- mixed phase and ice microphysics-
changes the dynamical response of clouds to
microphysics-larger spatial scales

All these process are also highly dependent on the
“type of cloud and the environment”



Deep clouds and aerosol

* Polluted clouds have higher freezing level and
invigoration due to latent heat of freezing, resulting
in an increase in the mass of condensed or frozen
hydrometeors, which assists in generating
precipitation via accretion processes

* Moderate pollution Clouds precipitate less

* Low pollution, assisted by warm rain process it
precipitates



Aerosol effect in mixed phase clouds

»Depends on cloud type

»Small convective storms: increase in CCN decreases
precipitation

» Multi cellular storms: increase in CCN has opposite
effects — promote secondary convection and increase
updrafts and precipitation

»Pathway for microphysics-dynamics: release of latent
heat freezing

»Marine airmass clouds precipitated sooner compared
to the continental airmass clouds



Glaciation effect (positive radiative effect at TOA and more precipitation),
thermodynamic effect (sign of radiative effect and change in precipitation not
yet known)
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Invigoration of convective clouds with a warm base -
Theoretical chain of events

taerosol loading

- t CCN amount

> ' number of droplets & ‘droplets size & .'droplets size variance
> l growth by collision-coalescence &tdrops growth by diffusion
- 'condensah’on latent heat release & ‘ droplets terminal velocities
- ' level and time of rain onset (warm rain may be suppressed)

o ¢ 'water mass passing up the 0°c level & 'freezing level

-> 'freezing latent heat release

— 'douds depth & 'C'OUd area Review: Cloud invigoration by aerosols—Coupling between

microphysics and dynamics

0. Altaratz®*, I. Koren?, LA. Remer®, E. Hirsch?

—




Aerosols
Invigorate convection

More graupel and supercooled water

Increases charge separation
More lightning Anthropogenic lightning

Yuan et al.
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Fig. 6.21 Light riming of ice crystals in clouds affected by pollution (/eft) compared to heavier

riming in non-polluted clouds (right). From Borys et al. (2003) with permission of the
American Geophysical Union
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Droplet size distribution in the PREmonsoon and MONsoon clouds

dN/dD (em™ um™)
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Drop size distribution in
premonsoon clouds are very
narrow and monsoon clouds
show wider spectra,

marked differences with
bimodal distributions
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Evaluation of bin microphysics simulations with CAIPEEX observations
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Cloud+ Rain and Graupel particle spectra in the clean and polluted cloud
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» Supercooled drops between 10 - 40 um attributed to activation and diffusional growth
» The melting of large amount of snow and graupel contributed to larger drops (greater than

P 400 um), and further promoted collision coalescence °
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Vertical structure of ice microphysics from different CCN simulations
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The lower peak in Qi is from the secondaryice production by Hallet Mossop
Process, which is seen to be active in CAIPEEX observation
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Single cloud analysis: Vertical variation of cloud microphysical
parameters for different CCN simulations
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Single cloud analysis: Vertical variation of cloud microphysical parameters
for different CCN simulations
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Single cloud analysis: With increase in CCN concentration LWP, INWP
and precipitation was increased. The precipitationincreased by 20%
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The Indirect Effect of Aerosol Particles

The concentration of water droplets depends directly on the
concentration of aerosol particles that can form these droplet, cloud
condensation nuclei (CCN) and the vapor pressure of water with
respect to the equilibrium saturation vapor pressure.

An increase in anthropogenic sources of CCN can increase the
reflection (albedo) of clouds, by increasing the droplet concentration
while decreasing the average diameter.

This effect was named the indirect effect of aerosols by Twomey
(1974)



Effect of Giant nuclei

* Effect is negligible in clean clouds
which already have an active warm-
rain process

* More significant in polluted clouds

* Most important in moderately
polluted conditions.



Maritime CCN
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Fig. 2 Time evolution of radar reflectivity in the microphysically maritime conditions (left pan-
els) and in the microphysically continental conditions (right panels). The formation of a squall line
in the microphysically continental conditions is seen (reproduced from Khain et al. 2005, with
permission).



Aerosol effects on LWP and cloud fraction:

An increase in aerosol
-to slow collision—coalescence
-to enhance evaporation
-reduce drop fall velocities.

Xue et al. (2008) identified two regimes:

(a)at low aerosol concentrations, aerosol and
LWP are positively correlated;

(b)at high aerosol concentrations, aerosol and
LWP are negatively correlated.




Clouds respond to aerosol depending on
meteorology.

Clouds are dynamic entities influenced by
meteorological factors which control convection.

Aerosol particles needed for cloud droplet
formation, are not the primary driver for clouds.

Feedbacks have the potential to make aerosol
effects on clouds of major climatic and
hydrological importance
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Warming due to higher and colder tops
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How aerosols affect the radiative properties of clouds. By nucleating a larger
number of smaller cloud drops, aerosols affect cloud radiative forcing in various
ways. (A) Buffering in nonprecipitating clouds. The smaller drops evaporate faster
and cause more mixing of ambient air into the cloud top, which further enhances
evaporation. (B) Strong cooling. Pristine cloud cover breaks up by losing water to
rain that further cleanses the air in a positive feedback loop. Aerosols suppress-

More thin cirrus warms by emitting less heat to
space and cools by reflecting more solar radiation
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ing precipitation prevent the breakup. (C) Larger and longer-lasting cirrus clouds.
By delaying precipitation, aerosols can invigorate deep convective clouds and
cause colder cloud tops that emit less thermal radiation. The smaller ice particles
induced by the pollution aerosols precipitate more slowly from the anvils. This can
cause larger and longer-lasting cirrus clouds, with opposite effects in the thermal
and solar radiation. The net effect depends on the relative magnitudes.

*buffering mechanisms: result in compensation between different cloud responses to aerosols

*aerosols have become extremely depleted by precipitation

*addition of aerosols can dramatically increase cloud cover, causing large cooling

*aerosol-induced invigoration of deep convective clouds may transport larger quantities of smaller ice particles to the anvils
*The higher, colder, and more expansive anvils can lead to warming by emitting less thermal radiation to space
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Fig. 4. Schematic diagram of the warm indirect aerosol effect
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Particle/droplet size distribution from different probes
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